Articles | Home Page | Images | Order Form | Plant Catalog | Tool Catalog |
Water can be removed from this saturated layer in two ways: evaporation (the water will be wicked upward as water evaporates from the surface), or by the absorption of water by the roots (powered by foliage transpiration). Of these two, removal by transpiration is by far the most effective. To prove this to yourself, just place two pots of identical soil next to each other, one with an established plant in it, the other with no plant. Water them thoroughly and then compare the weight of the pots over the period of one hot summer day.
If the plant is not root established, it cannot remove very much water by transpiration. This leaves too much water in the parts of soil without roots. In the short run, this is not much of a problem. In a proper environment, the plant will grow and will root establish quickly so that the saturated level is wicked dry in a day or two after a few weeks or months of growth.
However, if the pot is so large that the saturated level cannot be removed by normal root colonization, problems begin. This is not dependent on the soil type. With coarse soils a larger pot could be tolerated, but there are still limits to the space that can be quickly root colonized.
Even if the above doesn't occur, what kind of root growth occurs in a volume that is not wicked dry daily? When you water properly, a new charge of air is pulled into the pot by the volume of water draining from the drain holes. Carbon dioxide and other gases are purged from the soil. The longer you leave these gases in the soil, and the longer you wait to introduce a fresh charge of oxygen, the poorer the roots will be. If you create a situation such as overpotting that doesn't require daily watering, then you don't obtain an optimal soil growing environment.
For further discussion on rootballs see Intact rootball Vs. Rootbound
Articles | Home Page | Images | Order Form | Plant Catalog | Tool Catalog |